The Web’s Security Model
Philippe De Ryck

Y @PhilippeDeRyck (@ https://www.websec.be

A Secure
- Application
@ Development

DistriNet

p®iMinds ~ |CEEEY

€ - C ff [1 wwwexample.com

=t Apps For quick access, place your bookmarks here on the bookmarks bar. |mport bookmarks now...

© 98O~ =

ﬁ Other Bookmarks

Google

One account. All of Google.

Sign in with your Google Account

<_ g
philippe.deryck@cs.kuleuven.be
philippe.deryck@cs.kuleuven.be

.....................
v/ Stay signed in Forgot password?

Sign in with a different account

One Google Account for everything Google
GMROL * > O

® 0 Elements
© W <topframe>

Sources

Network Timeline Profiles Resources Audits

v [] Preserve log

Console

Security

> document.querySelector("iframe").contentDocument.querySelector("input[type=password]").value

® » Uncaught DOMException: Failed to read the 'contentDocument' property from 'HTMLIFrameElement': Blocked
a frame with origin "http://www.example.com" from accessing a cross—-origin frame.

»

X

The Agenda for Today

= The Same-Origin Policy
= Setting a baseline with very relevant 20 year old technology

= Third-Party Content Integration
= Frame and script-based integration

= Session Management
= Cookies and the unavoidable CSRF attacks

= Accessing Cross-Origin APls
= Extending the SOP with server-driven policies

= Conclusion

About Me - Philippe De Ryck

= Postdoctoral Researcher @ DistriNet (KU Leuven)

= PhD on client-side Web security
= Expert in the broad field of Web security
= Main author of the Primer on Client-Side Web Security

= Running the Web Security training program et bunes
= Dissemination of knowledge and research results - “'” -
= Public training courses and targeted in-house training - Side Web Security

= Target audiences include industry and researchers

Y @PhilippeDeRyck (@ https://www.websec.be

The Same-Origin Policy

Same-Origin Policy

= Separation based on origin
= Default security policy enforced by the browser
= Restricts the interactions between contexts of different origins
= Protects applications from unintended interactions
= First appeared in browsers in 1995, and still going strong

ORIGIN SAME-ORIGIN PoLicy
The triple <scheme, host, port> Content retrieved from one
derived from the document’s URL. origin can freely interact with
For http://example.org/forum/, the other content from that origin,
origin is <http, example.org, 80> but interactions with content

from other origins are restricted

Examples of the Same-Origin Policy

Q http://example.com

SAME-ORIGIN PoLICY l 6 http://example.com

Content retrieved from one

origin can freely interact with
other content from that origin,)
but interactions with content Q http://forum.example.com
from other origins are restricted

l 6 http://private.example.com

Domains vs Subdomains

= Subdomains
= E.g. private.example.comvs forum.example.com
= Considered different origin
= Qrigin can be relaxed to example.com using document.domain
= Possibility to use cookies on example.com

= Completely separate domains
= E.g. private.example.comvs exampleforum.com
= Considered different origin, without possibility of relaxation
= No possibility of shared cookies

Subdomains and Domain Relaxation

s A
www.example.com

6 private.example.com

Q forum.example.com

@
@A account.example.com

Subdomains and Domain Relaxation

s A
www.example.com

L) 6 private-example.com

Q forum.example.com

@
@A account.example.com

«a DOMAIN RELAXATION

document.domain = “example.com”;

10

Subdomains and Domain Relaxation

r A
www-example.com

L) 6 private-example.com :
Qfa#umTexample.com

@
@A account.example.com

«a DOMAIN RELAXATION

document.domain = “example.com”;

11

But the SOP Is More than Context Isolation

E——T

SAME-ORIGIN PoLICY Q http://example.com —

Content retrieved from one
origin can freely interact with l htto:// |
other content from that origin, | 6 prijexamp’e.com
but interactions with content

from other origins are restricted

N—
) http:/lexample.com

ﬁ http://forum.example.com
N~

l 6 http://private.example.com

N
http://private.example.com

12

Origin-Protected Resources

= Modern browsers offer plenty of origin-protected resources
= The DOM and all its contents

= Client-side storage facilities
+ Web storage, In-browser file systems, Indexed DB

= Permissions to various “invasive” features
« (Geolocation, full-screen capabilities, media capture, ...

= WebRTC video and audio streams
= Ability to load and inspect resources from same-origin servers
= Ability to send XHR requests without restrictions

= You want to be in control of what happens in your origin

13

Third-Party Content Integration

14

Third-Party Content Integration

Tweets ¥ Follow

OWASP Belgium 22 Feb
@owasp_be

Next #OWASP Belgium chapter meeting with
@tvcutsem and @danwallach on 8-Mar in
Leuven - RSVP here ow.ly/YAMRH

3 Retweeted by Philippe De Ryck
[Show Summary

Linux Mint 21 Feb
W @Linux_Mint

Beware of hacked ISOs if you downloaded Linux
Mint on February 20th!
blog.linuxmint.com/?p=2994

3 Retweeted by Philippe De Ryck
Expand

impera Immm . 17 Feb
@impera_io

Interested in #OpenStack or facing problems
with its complexity? Join our training on 21/4 in
Leuven
distrinet.cs.kuleuven.be/events/2016/e1...
#BeTech @iMinds

3 Retweeted by Philippe De Ryck
Expand

Philippe De Ryck 17 Feb
@PhilippeDeRyck

Just Released: Are the free SSL/TLS certificates
from Let's Encrypt any good?: Anyone who has

Tweet to @PhilippeDeRyck

by Sean Gallagher - Feb 29, 2016 11:47pm CET

Payroll data leaked for current, former
Snapchat employees

Incident occurred after employee responded to e-mail phish scam.

3 Share | Tweet 8 Emal | 23|

Duitsers willen Franse
kerncentrale dicht

ENERGIE De Fransen zouden de ernst van
een incident in de kerncentrale van
Fessenheim geminimaliseerd hebben.
Lees verder >

‘Lage rente nog 1 tot 2 jaar
houdbaar’

MIJN GELD Ook BNP Paribas Fortis vraagt
de overheid om een debat over een
eventuele verlaging van de bodemrente van
0,11% op het spaarboekje. Lees verder >

= Meer winst voor BNP Paribas Fortis

Alle promo’s onder één dak.

colruyt”

AANGEBODEN DOOR ING &

. Ontdek hier alle
~~ nieuwtjes van Batibouw
meer >

®

Meer info >

Integration of Third-Party Code

= Two mechanisms to integrate code
= Embedding an iframe, which hosts a separate document
= Directly including JavaScript code using the <script> tag

= [frames
= Each iframe is a different context, with a separate origin
= Preserves the security boundaries, but may hinder interaction

= Scripts
= Scripts are loaded and executed within the page’s context
= Violates the security boundaries of a document

16

Iframe-based Content Integration

= |[frames are controlled by the same-origin policy
= Documents with different origins are isolated by the SOP
= Well-suited to integrate separate components (e.g. advertisements)
= Allows you to apply the principle of least privilege
= More difficult to achieve dynamic interaction

= HTML5 introduces the sandbox attribute

= Supports disabling scripts, plugins, forms, etc.
= Allows you to assign a unique origin to your content
= Integrate untrusted content with a minimal set of capabilities

17

Interaction between Contexts

= Related contexts
= Documents can open popup windows, embed frames, etc.
= Related cross-origin contexts are isolated by default
= Limited interactions possible (navigation, messaging APls, ...)

= Navigation
= Navigate child frame to different resource
= Navigate parent frame, reloading the entire document

= ExposedAPls
= Prime example: Web Messaging API, to support interaction

18

Web Messaging API

= Messaging mechanism between contexts
= Used for iframes, Web Workers, etc.
= Event listener for receiving messages (opt-in mechanism)
= API function for sending data (text, objects, etc.)

= Security considerations
= Specify origin of receiver to prevent leaking of content
= Check origin of sender to prevent malicious use

= Validate incoming content before using data to prevent injection
attacks

19

Web Messaging API

@ SENDING MESSAGES
myframe.postMessage (data, 'http://test.example.com') ;

@ RECEIVING MESSAGES

var handler = function (event) {
if (event.origin ==
'http://www.example.com') ({
alert (event.data) ;

}

window.addEventListener ('message', handler, false);

20

Example: a Client-side Storage Facility

~

/https://storage.example.com/

~

-~

_

Accessing local storage through Web
Messaging allows enforcing access
control and content inspection

)

21

Script-based Content Integration

= No security boundaries offered by browser
= Scripts are executed in the context that loads them
= No boundaries between remote and local scripts
= Full access to the client-side context, including local resources

= Potentially dangerous setup
= No more control if you include scripts from all over the place
= Which has unfortunately become common practice

22

Large-scale Study of Remote JS Inclusions

- Frlg MWW S“Trumba Bl eskobo DMemsemieaois & rageflakes ’U’L?’TIEO
mb shadows gir@VvVee: You CZIMDra FORL v pesssi wes e o mbsnc g) newsgator
Blogruscnent 'f ‘i\ 2NE R shutterfly =reca @Pocl)ate« Feedicer* L favoor iy e A

ZAZZLE Tail @TagWor‘ld '_!'-_.___,_ 9 b dogear ‘yakoli&c @ 1 ODDPOST p , O
meas . PERY (F) ®A bish. . Acor @ EEFEITYNN smeutrod PO
the cloud b'|7/ PP

gather Aot row bo) lost-fmm

66 e
~eos | 88.45% of the Alexa top 10,000 web p ——
@ memeorandum . . e
Suprgls - Sites Included at least one remote gorrice @&
CA"POBI‘S)‘ - H) 2Olt ‘c::i'-::-} ¢
b JavaScript library Gonrotol wink

rlgO W rdcast -f P — o
_ - ——

nativetext FoNcOo0 PODZINGER.. REsSSINaD) feeld 77er oniime =S = y.ve
s fFlickr Ning Ookles £ zoominfo CASTPOSY Yixurmod vubnubit? S
Bloglines &5 SIS [Irorowoe Surmedia [ESCOy

- S—— e a Yub.com vsod R Tyspace NewsAlloy m — Allmydataccom
(s nCom o — = aipha ks -

8RR «~ EFcast openomy ajchat B Jambho ROWO ClipShack
o_— - - PANDORAX lOOkl =] ge—- <= PROTOPAGE -

o 23 NOOdly wnair diigo \ Lox

23

https://seclab.cs.ucsb.edu/media/uploads/papers/jsinclusions.pdf

Large-scale Study of Remote JS Inclusions

% of Alexa sites

35

30

25

20 —

15

10

\ T T T I T T T T T T T Fr T BRA

35 55 75 95 115 135 155 180 225 265 285
5 45 65 85 105 125 145 170 215 255 275 295

#Remote hosts providing JS files

https://seclab.cs.ucsb.edu/media/uploads/papers/jsinclusions.pdf

24

Safely Including Third-Party Code

= |everage origin-based separation using iframes
= Load the third-party script in a document with a different origin
= SOP enforces isolation from the main origin and sensitive resources

= Example case at Dropbox
= They use a chat widget from a third-party provider
= |nclusion in the main dropbox.com origin is an unacceptable risk
= Widget loaded in an iframe with origin dbxsnapengage.com
= Communication happens with Web Messaging

25

https://blogs.dropbox.com/tech/2015/09/csp-third-party-integrations-and-privilege-separation/

Reclaiming Control over Your Context

= Say hello to Content Security Policy (CSP)
= Main goal: prevent XSS attacks from causing harm

= Allows you to specify where remote content can be loaded from
= Allows you to specify where outgoing requests can go to

= Policy specified by the server, enforced by the browser
= Gives you control over your own code

= Allows you to selectively load third-party code
* And constrain what that code can do

26

Alternative Approaches to Constrain Scripts

= Hosting scripts in your own origin
= Difficult to deal with a highly dynamic codebase

= Safe JavaScript subsets
= Requires compatibility with existing scripts

= Server-side rewriting
= Requires control over the scripts to do the rewriting

= Browser-based sandboxing
= Requires browser modifications, which is a deployment nightmare

= JavaScript-based sandboxing
= Active research topic, may become possible in the coming years

27

Session Management

28

The Basics of Cookies

= An HTTP state management mechanism
= Set by the server to the client through the Set-Cookie header
= QOffered by the client to the server through the Cookie header

Set-Cookie: name=value; Expires=Wed, 09 Jun 2021 10:18:14 GMT;
Domain=example.com; Secure; HttpOnly

Cookie: name=value

= Cookie properties
= |f no expiration date is set, it is removed when the browser closes

= If no domain is set, it is only valid for the domain that issued it
« Otherwise, it is sent to the current domain and all subdomains

29

Using Cookies to Manage Sessions

® B

® B

Go to some-shop.com
Hello stranger
Login as Philippe
Hello Philippe
Show orders
List of orders

Go to some-shop.com
Hello stranger

Login as NotPhilippe
Hello NotPhilippe

Some-shop.com

® B3a99a4dle8f496

Logged in: faiee
User: Philippe
Admin: true

® 2ad3e9f78bc808

Logged in: fatee
User: NotPhilippe
Admin: false

30

Properties of Cookie-Based Sessions

= Session identifiers and objects are bearer tokens
= The token represents ownership of the session

= Cookies are managed by the browser
= Stored automatically
= Automatically attached to every request, if the domain matches

= Common threats against cookie-based session management
= Brute forcing a session identifier
= Session hijacking and session fixation
= Cross-Site Request Forgery

31

Cross-Site Request Forgery lllustrated

Login as Philippe

@ Hello Philippe
@ Show orders

List of orders

some-shop.com

»~ & Change email address
Sure thing, Philippe

Show latest blog post
a Latest blog post

hackedblog.com

32

The Essence of CSRF

= The server is confused about the intentions of the user
= Malicious sites can trigger unintended requests from the browser
= Consequence of the ambient authority carried by the cookie

= Common vulnerability

= lllustrated by cases at Google, Facebook, eBay, ...
= Ranked #8 on OWASP top 10 (2013)

= Countermeasures require explicit action by the developer
= Often only focuson POST /PUT / DELETE

33

CSRF Examples

SOFTPEDIA® DESKTOP MOBILE WEB

= Softpedia -~ News - Security

CSRF Vulnerability in eBay Allows
Hackers to Hijack User Accounts — Video

The issue has been reported to eBay, but it's still unfixed

IT consultant and tech enthusiast Paul Moore has identified a few security
issues on eBay, including a cross-site request forgery (CSRF or XSRF)
vulnerability that can be exploited by hackers to compromise user accounts.

The expert has found that the eBay page which lets users update their profile is vulnerable
to XSRF. That's because the field which links it to the user’s active cookie is missing.

This allows hackers to submit the form with pre-populated data. The password cannot be
updated by using this method. However, the information that's needed to reset the
password can.

The attacker simply needs to submit the form with his own phone number and postcode —
information that's required when resetting the password.

An eBay option allows the hacker to ask for the four-digit confirmation code to be sent to
a phone number instead of an email address, specifically the number he had entered
earlier when he submitted his own information.

Access to an eBay account doesn't allow the hacker to steal the victim’'s PayPal username
and password. However, as Moore highlights, he doesn’t need this information.

The hacker can put a fictitious item up for sale (with a “Buy It Now" price) and bid for it
from the victim’s account.

Confirm your identity to reset password

To confirm your identity, we will call you and give you a four-digit code. Once you have the

Select the phone number
® (7923)-xxxx23
(O Call me at a new number instead

(|)|

[JUpdate my eBay profile with the number

When would you like us to call you ?
@® Call me now
O Call me in two minutes (helpful if you need to disconnect from the internet first)

Call me

http://news.softpedia.com/news/CSRF-Vulnerability-in-eBay-Allows-Hackers-to-Hijack-User-Accounts-Video-383316.shtml

34

CSRF Examples

by Michael Mimoso ¥ Follow @mike_mimoso February 27, 2015, 2:07 pm

Pharming attacks are generally network-based intrusions where the ultimate goal is to
redirect a victim’'s web traffic to a hacker-controlled webserver, generally through a
malicious modification of DNS settings.

Some of these attacks, however, are starting to move to the web and have their
beginnings with a spam or phishing email.

Hackers hijack 300,000-plus wireless
routers, make malicious changes

Devices made by D-Link, Micronet, Tenda, and TP-Link hijacked in ongoing attack.

by Dan Goodin - Mar 3, 2014 8:42pm CET
116

CSRF SOHO ROUTER ATTACK

MALICIOUS
WEBSITE

Mo ramewsrvers
545.75.11
5.45.75.36

2% 4 T\
é\\ff} E E

o ‘ avwcom
& - A7 mawe com 2w com

Malicious Javascript is loaded The router is now set to use a malicous | Devices that attempt to connect to
by a computer inside the local nameserver (DNS) for all devices in financial (or other) sites can now be
network and forces a local machine the network. redirected to fake websites that
to automaticaly change the can then caplture login credentials.

routers DNS settings.

2 Enlarge / Three phases of an attack that changes a router's DNS settings by exploiting a cross-site request
vulnerability in the device's Web interface.

X Team Cymru

Researchers said they have uncovered yet another mass compromise of home and small-office
wireless routers, this one being used to make malicious configuration changes to more than 300,000
devices made by D-Link, Micronet, Tenda, TP-Link, and others.

https://threatpost.comv/pharming-attack-targets-home-router-dns-settings/111326 35
http.//arstechnica.com/security/2014/03/hackers-hijack-300000-plus-wireless-routers-make-malicious-changes/

CSRF Defense 1: HTML tokens

= Hide token within the page, and check upon form submission
= Same-0rigin Policy keeps this token out of reach for the attacker

some-shop.com

hackedblog.com

AN

WWWwW

® Account details page

Account details
® ¢ Change email address

Sure thing, Philippe

~ & Change email address
CSRF token sadness ®

Show latest blog post
< Latest blog post

36

CSRF Defense 1: HTML tokens

= Hide token within the page, and check upon form submission
= Same-0rigin Policy keeps this token out of reach for the attacker

—
@|| TOKEN-BASED APPROACH

Html

4)

<form action="submit.php”>
<input type="“hidden” name="“token”
value=“qasfj8jl2adsjadu2223” />

</form>

\- J

37

CSRF Defense 2: Origin Header

= Check the origin header sent by the browser
= Automatically added to state-changing requests (POST, PUT,

DELETE)

some-shop.com

hackedblog.com

Change email address
Origin: http.//some-shop.com

Sure thing, Philippe

Change email address
Origin: http://hackedblog.com

Stranger danger! ®

> &

Show latest blog post
« Latest blog post

38

CSRF Defense 3: Transparent Tokens

= Transparent token stored in cookie, checked in header
= Security depends on the ability to read the cookie from JavaScript

First request

Set-Cookie: session=..
Set-Cookie: CSRF-Token=123

Cookie: session=.. some-shop.com
Cookie: CSRF-Token=123
X-CSRF-Token: 123

Only the JS code on the page can
copy cookie value into header

39

Traditional Cookie-Based Session Management

= Still very common in Web applications
= Well-supported by browsers and frameworks
= Often deployed in an insecure fashion
= Keep best practices in mind when using this mechanism

= Cookie-based session management best practices
= Deploy your application over HTTPS
= Set the HttpOnly and Secure flags
= Host user-provided content on a different domain
= Deploy CSRF defenses

40

Intermezzo: Cookie-based Tracking

= Tracking by means of cookies uses the same mechanisms

&
\ >4
Load advertisement Visit page
Advertisement & I
Set-Cookie: id=1
some-shop.com
. Load advertisement®
advertisements.com _ I
Advertisement Visit page

Some-other-shop.com

41

Intermezzo: Cookie-based Tracking

= Tracking by means of cookies uses the same mechanisms
Page context is stored alongside with your identifier
Information from multiple sites is linked together

https.//support.mozilla.org/en-US/questions/975325?page=2

Intermezzo: Cookie-based Tracking

= Tracking by means of cookies uses the same mechanisms

= Page context is stored alongside with your identifier
= Information from multiple sites is linked together

= Once you're on an authenticated page, they have even more info

= Many attempts to stop this behavior of cookies
= With little to no success
= Even the “Do-Not-Track” header is used to compile fingerprints

= Do not worry, there are plenty of tracking mechanisms
= Browser fingerprinting
= HTMLS Battery API

43

Accessing Cross-Origin APIs

44

Web Applications Did not Rely on APIs

Parse request

Overview

GET showItems.php Store data

Deadline Task
25/02/2015 Cooking

Retrieve all data

30/03/2015 B-day party <html>

. Add New | </ntmts

lGET contacts.php

Generate HTML

Send response

45

Because Browsers Did not Allow It ...

Code: (Evaluate)

Error: uncaught exception: [Exception... "Component returned failure code: 0x80004005 (NS_ERROR_FAILURE)
[nsIXMLHttpRequest.send]" nsresult: "0x80004005 (NS_ERROR_FAILURE)" location: "JS frame ::
http://people.cs.kuleuven.be/~philippe.deryck/test/cors/simple_request.html :: makeRequest :: line 7" data: no)

46

Cross-Origin Data Access

= Data sharing across applications became a big thing
= E.g. Google Services, Facebook’'s Graph API, ...
= The Web was not built to support these scenarios

= Many useful scenarios sparked creativity, and workarounds
= Workarounds bypass the browser’s basic security model
= Often with serious consequences for the security of the site

= Two commonly used technologies:

« Server-side proxies
- JSONP

47

Server-Side Proxies

= The browser considers this content to be from the same
origin
= The included data or code runs with the same privileges
= Script injection by design

AR

\ - 4

Load page

>
= H
_B8

XHR: Load content

from websec.be : Load page
=] :
= >l

www.example.com www.websec.be

48

JSON with Padding (JSONP)

= The included data or code runs with the same privileges
= Script injection by design

<script src="http://www.websec.be/data?callback=showUsers”>
</script>

A\
www.example.com
wWWwWWwW p

Load page
>
i
—
Load script
>

from websec.be
www.websec.be

showUsers([{"id": 1, "name": "Philippe"}, 49
{"id": 2, "name": "NotPhilippe"}1]1);

These Workarounds Are Dangerous

= The landscape started to evolve very quickly
= More and more companies started offering APls
= More and more applications started integrating APls
= The hacks being used in practice suffer from severe security issues

= Essentially, it was time to enable data sharing by design
= Best approach is to allow XHR to fetch data from another origin

= This is exactly what Cross-Origin Resource Sharing (CORS) does
- But it needs 22 pages of specification to do so

50

Simply Allowmg XHR across Origins

www.exXxam

le.com

Load page

XHR: load user’s
profile from websec.be>

www.websec.be

var xhr = new XMLHttpRequest();

xhr.open('GET', 'http://www.websec.be/profile', false);
xhr.send();

// Access the profile data
alert(xhr.responseText);

51

Simply Allowing XHR across Ori

The page at https://distrinet.cs.kuleuven.be
says:

<IDOCTYPE html>
<html lang="en">
<head>

<meta name="viewport"
content="width=device-width, initial-scale=1">

<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible"
content="|E=edge’>

<script src="bundle.js"></script>
<link rel="stylesheet" href="bundle.css" />
</head>

<body ng-app="webSecurity" ng-
controller="Resources as resources">
<nav class="navbar navbar-default
raised">
<div class="container-fluid">
<div class="navbar-header’>
<button type="button”
class="navbar-toggle collapsed” data-
toggle="collapse” data-target="#navbar">
<span class="sr-
only*>Toggle Navigation
<span class="icon-

bar">

<span class="icon-
bar">

<span class="icon-
bar">

</button>

<img class="logo-img"
src="images/distrinet.png" />

<div class="logo-text"...

The page at https://distrinet.cs.kuleuven.be

. says:
 if(ffunction(e,t){*object" ==typeof

moduled& object’==typeof module.exports?
module.exports=e.document?t(e,!0):function(e){if(!
e.document)throw new Error(*jQuery requires a
window with a document®);return t{e)}:t(e)}
("undefined"!=typeof window?
window:this,function(e,t){functicn n{e){var t="length®in
e&&e.length,n=Z.type(e);return"function”===n||
Z.isWindow(e)?!1:1===e.nodeType&&t?!
0:"array”===n||0===t||'number* ==typeof t&&t>08&&t-1
in e}function r(e,t,n){if(Z.isFunction(t))return
Z.grep(e,function{e,r){return!!t.call(e,r,e)!
==n});if(t.ncdeType)return Z.grep{e,functicn({e){return
e===tl==n});if("string"==typeof t){if(se.test(t))return
Z filter(t,e,n);t=Z filter(t,e)}return Z.grep(e,function(e)
{return z.call(t,e)>=0!==n})}function i(e,t){for(;
{e=e[t])&&1!==e.nodeType;);return ejfunction c(e){var
t=mel[e]={};return Z.each(e.match(fe)||[],function(e,n)
{t[n]=!0}),t}functicn af)
{J.removeEventListener("DOMContentLoaded",a,!
1),e.removeEventListener(“load*,a,!1),Z.ready()}
functicn s{){Object.defineProperty(this.cache={},0,
{get:function{){return{}}}),this.expando=Z.expando
+s.uid++}function I(e,t,n){var r;if(void
0===n&&1===e.ncdeType)if(r="data-" +t.replace(ye,"-
$1").toLowerCase(),n=e.getAttribute(r), “string* ==type
of n){try{n="true*===n?!0:"false*===n?!1:"null*===n?
null:4n+**===n?+n:$e.test(n)?Z.parseJSON(n):n}
catch(i){}be.set(e,t,n)}else n=void O;return n}function
c(){return!O}function u(){return!1}function d{){try{return
J.activeElement}catch(e){}}function p(e,t){return
Z.nodeName(e, table...,href:"https://
distrinet.cs.kuleuven.be/events/websecurity/files/
20150902_DeRyck_EmberJSMeetup.pdf”,icon:*fa-
downlcad® tooltip:"Download Slides‘}},{logo:*images/
slides_angularsecuritymeetup.png” title:*Securing
Your AngularJS Application® text:'The slides from my
presentation at the <a href="http://www.meetup.com/
AngularJS-Belgium/*>AngularJS Belgium user
group, focusing on client-side security in AngularJS
applications.’ link:{type:"download" href:"https://

distrinet.cs.kuleuven.be/...

.example.com

The page at https://distrinet.cs.kuleuven.be
says:

Date: Tue, 03 Nov 2015 09:01:52 GMT
Content-Enceding: gzip

Last-Modified: Fri, 16 Oct 2015 16:48:38 GMT
Server: Apache

ETag: "96b05-5223b813d5¢ccc-gzip”

Vary: Accept-Encoding

Content-Type: application/javascript
Accept-Ranges: bytes

| Prevent this page from creating additional dialogs.

52

Cross-Origin XHR Is also Dangerous!

= This would enable scenarios that were previously impossible
= Not something you want on the Web

= CORS addresses this problem

CORS allows the server to tell the browser whether a
resource can be accessed by a specific origin

= The browser enforces these checks on the XHR call
= If everything is OK, access to the resource (response) is granted
= QOtherwise, access is denied

53

Simple CORS Example

www.example.com
Load page

>
=
B

XHR: load user’s profile from websec.be
Origin: http://www.example.com

Access-Control-Allow-Origin:
http://www.example.com

www.websec.be

54

CORS Protects Legacy Servers by Design

ey

Load page

www.example.com

> 9'

XHR: load user’s profile from websec.be
Origin: http://www.example.com

No CORS headers present

www.websec.be

Synchronous XMLHttpRequest on the main thread is deprecated because of its detrimental effects to the end user's experience. simple_requ.. :6:0

For more help http://xhr.spec.whatwg.org/

Cross-0rigin Request Blocked: The Same Origin Policy disallows reading the remote resource at https://www.google.be/. <unknown>

(Reason: CORS header 'Access-Control-Allow-Origin' missing).
NS_ERROR_FAILURE:

simple_requ.. :7:0

55

\¥ R

L J

Assumption

L

\, BYMATT @ 19 COMMENTS

HTML 5 does not do much to solve bro
forces developers to fix code that was ¢

For example HTML5 introduces HTTP ad
requests cross domain. It introduces n

requests, but the client actually needs t

Hacker News

HACKING FACEBOOK WITH HTML5

[E Facebook

€ > C| A % http://touch.facebook.com/#http://m-austin.com/fb/test.php

ﬁ Work ﬁ Code

facebook
Profile Friends

The page at http:/ /touch.facebook.com/
says:

XS5

o)

Language | Mobile Site | Full Site
Facebook © 2010

http://m-austin.com/blog/?p=19

ﬁ Other Bookmarks

\J o] - °

Assumption

XHR requests can only be sent to the application’s origin

ww www.example.com

Load template “profile.html”

I >

Load template “http://www.websec.be/evil.html”
Origin: http://www.example.com

<

>

< @l

Access-Control-Allow-Origin:
http://www.example.com

www.websec.be

function onNavigate(page) {
var xhr = new XMLHttpRequest();
xhr.open("GET", page, false);
xhr.send();
//inject response into the page

} 57

Handling Credentials

= Requests can be anonymous or authenticated

= By default, credentials (i.e. cookies) are not sent
= Can be enabled by setting the withCredentials flag

= When credentials are used, the server must acknowledge
this
= By sending the Access-Control-Allow-Credentials response header

= Aim is to preventillegitimate use of the user’s credentials
= Not intended to protect the server from malicious requests

58

Simple CORS Example with Credentials

var xhr = new XMLHttpRequest();

xhr.open('GET', 'http://www.websec.be/profile', false);
xhr.withCredentials = true;

xhr.send();

www.example.com
Load page

>
= B
B

XHR: load user’s profile from websec.be
Origin: http://www.example.com
Cookie: PHPSESSID=1la2b3c4d5e6f

>

Access-Control-Allow-Origin:

http://www.example.com www.websec.be
Access-Control-Allow-Credentials: true

59

Simple CORS Example with Credentials

PN XHR: load user’s profile from websec.be
Origin: http://www.example.com

Cookie: PHPSESSID=1la2b3c4d5e6f

Access-Control-Allow-Origin:
http://www.example.com
Access-Control-Allow-Credentials: true

XHR: load user’s profile from websec.be @l
Origin: http://www.example.com

Cookie: PHPSESSID=???

Access-Control-Allow-Origin:
http://www.example.com
Access-Control-Allow-Credentials: true
www.websec.be

60

But There Is More ...

Load page
=R
- -8
XHR: delete user’s profile from websec.be
Origin: http://www.example.com
>
<

Absence of header means that this is not allowed
www.websec.be

var xhr = new XMLHttpRequest();
xhr.open('DELETE', 'http://www.websec.be/profile/1', false);
xhr.send();

61

But There Is More ...

= Denying access to the response protects sensitive data
= Prevents an attacker from reading the user’s data
= Only possible because data retrieval is a stateless operation

= Most APIs also offer operations that trigger state changes
= Creating, updating and deleting resources
= Denying access to the response does not really cut it here ...

= CORS requires explicit approval for these requests

62

Explicitly Approving Requests

= CORS aims to prevent giving the attacker more capabilities
= Makes a distinction between simple and non-simple requests

= Simple requests were already possible before CORS
= AGET ora simple POST across origins was always possible
= E.g. fetching an image from another origin
= E.g. submitting a form to another origin

= Non-simple requests were not possible before CORS
= E.g. across-origin DELETE or PUT request
= E.g. attaching additional headers to a cross-origin POST request

63

Non-Simple Requests Require a Preflight

www.example.com
Load page
>
=
« H
Check if delete is allowed www.websec.be

OPTIONS /profile/l1 HTTP/1.1
Origin: http://www.example.com
Access-Control-Request-Method: DELETE

>

Access-Control-Allow-Origin: http://www.example.com

Access-Control-Allow-Methods: GET, PUT, DELETE
<

Actual delete
DELETE /profile/1 HTTP/1.1

Origin: http://www.example.com

>

Access-Control-Allow-Origin: http://www.example.com
<

64

Preflight Configuration Options

= The preflight request asks for permission
= Based on the data that will be sent with the actual request
= |s sent automatically by the browser for non-simple requests

= CORS preflight request headers
= Origin
= Access-Control-Request-Method
« Specify the method that will be used for the non-simple request
= Access-Control-Request-Headers
« Specify which custom headers will be added to the request

65

Preflight Configuration Options

CORS response headers on preflight requests

Access-Control-Allow-Origin
Access-Control-Allow-Methods

 |ndicate which methods can be used for the actual request
Access-Control-Allow-Headers

 Indicate which request headers can be used for the actual request
Access-Control-Max-Age

 Indicate how long this response should be cached

Access-Control-Allow-Credentials
 Indicate if the actual request can include credentials

66

CORS Request and Response Headers

= CORS request headers
= Qrigin

= CORS response headers on actual requests
= Access-Control-Allow-Origin

= Access-Control-Expose-Headers
* Indicate which response headers the browser can expose
= Access-Control-Allow-Credentials
 Indicate if the response can be exposed if credentials are used

67

Preflight Requests in Practice

= Server configuration
= Developer needs to specify a policy
= Plenty of frameworks/middleware offer automatic configuration

= For efficiency reasons, preflights are cached by the browser
= Eliminates an additional round trip for the lifetime of the entry

= Mandatory if you use custom headers (e.g. JWT tokens)
= CORS only allows cookies without preflight for simple requests

68

CORS Support in Browsers

Cross-Origin Resource Sharing & -rec

Method of performing XMLHttpRequests across domains

Current aligned |LEEEEEGTE Show all

*
Edge Firefox Chrome

Safari Opera

iOS Safari

Global

Opera Mini

e

http.//caniuse.com/#search=cors

86.61% + 599% = 92.61%

Android * Chrome for

Browser Android

4.1

69

CORS in Practice

= CORS is well supported
= Virtually all modern browsers are CORS-enabled
= Many server-side frameworks support CORS configuration
= Many publicly available APls already send CORS headers

ﬁ
J

= CORS should be even more widely supported
= Many new technologies depend on CORS under the hood
= Mainly to prevent new capabilities from harming legacy servers
= E.g. HTMLS canvas, Subresource Integrity, ...

And many
more ...

70

Guidelines for Building a CORS Policy

= Private resources should not be accessible with CORS
= Files that only your application should use, and nobody else
= Sensitive resources and APIs

Do not send any CORS headers in the response

= Public resources should be easily accessible with CORS
= Files that anybody can use, without authorization
= Published libraries, publicly available images, ...
= Especially non-sensitive, non-private JavaScript files (SRI)

Access-Control-Allow-Origin: *

71

Guidelines for Building a CORS Policy

= Some sensitive, private resources need to be shared
= E.g. a contact list to be used in a partner application
= E.g. a button to integrate in other sites, that requires authentication

= These steps should be followed by the server

= Verify if the value of the Origin header matches an accepted origin
 If not, abort without sending any headers

= Verify if the user is authorized to access the requested resource
- Take the method and custom headers into account
 If not, abort without sending any headers

= Process the request, and send the appropriate headers

Access-Control-Allow-Origin: http://www.example.com
Access-Control-Allow-Credentials: true
Access-Control-Expose-Headers: X-API-VERSION 72

Exciting New Features of a Canvas

= HTMLS Canvas offers JavaScript-powered graphics
= (Good candidate to replace Flash and similar plugins
= Enables various impressive scenarios, including entire games

= HTMLS5 Canvas supports rendering of existing graphics

= E.g. play an HTMLS5 video on the surface of a canvas
= E.g. render an existing image on a canvas and edit it

= Extensive JavaScript API
= Supports features to inspect images, manipulate images
= Supports saving as a Data URI or a File blob

73

HTMLS Canvas Enables Image Manipulation

Get image

<lmg sre="" /> '

<canvas>
</canvas>

Context: img. onload = function() { WWW.WebseC.be

www.example.com canvas.width = img.width;
canvas.height = img.height;
ctx.drawImage(img, 0, 0);

74

HTMLS Canvas Enables Image Inspection

Get image

<canvas>
</canvas>

© ¥ <topframe> v [IPreserve log

© » Uncaught SecurityError: Failed to execute 'toDataURL' on ‘HTMLCanvasElement': Tainted canvases may not be exported.

>

// Get the CanvasPixelArray from the given coordinates and dimensions.
var imgd = context.getImageData(x, y, width, height);
var pix = imgd.data;

// Extract as Data URI 7
canvas.toDataURL("image/png”); S

Can Be Shared Across Origins

Get image

Origin: http://www.example.com

<canvas>
</canvas>

Access-Control-Allow-Origin:
http://www.example.com

Context:
www.example.com

var img = new Image();
img.crossOrigin = "Anonymous"; //or "use-credentials”
img.src = "http://www.websec.be/topsecret.png";

76

Canvas Support in Browsers

Canvas (basic support) & - s Global 91.51% + 491% = 96.43%
, , _ , _ Belgium 95.94% + 0.13% = 96.07%
Method of generating fast, dynamic graphics using JavaScript.
Usage relative Show all
* * * : *
I= Edge Firefox Chrome Safari Opera iOS Safari Opera Mini épc;jv(/cs)le?f C%?g;gigor

43 4.1
43

45 4.4

11 42 47 9 33 9.1 8 46 46

e z
5

50

77

http.//caniuse.com/#search=canvas

Embrace the Same-Origin Policy

= The SOP may be old, but it's still incredibly relevant
= Contextisolation protects your page’s contents
= Prevents unauthorized access to your origin-based resources

= Direct script inclusion bypasses any origin-based protection

= Scripts are executed within the page’s context
= Perfectly fine for your own JavaScript code
= Very problematic with third-party code

= Protect yourself by combining iframes with new technologies
= Principle of least privilege with sandboxand CSP

79

Dealing with Remote Communication

= The SOP only protects against direct context interaction
= Prevents direct access to your session cookies

= |ndirect interactions can still cause unintended consequences
» Cookies are attached to outgoing requests, causing CSRF

= Scripted remote communication is denied by the SOP
= Used to be the case before CORS was introduced
= With CORS, the server is in control over which requests are allowed
= Complex policy, but very powerful, and already used a lot

30

Take Security Seriously

= |solating content may require a bit more effort
= But you gain a lot of security guarantees by doing it

= Take inspiration from your predecessors
= There are plenty more examples besides Dropbox

= Share your experiences
= And be a leader for others to do the same

81

Dismﬂngt Progressive Web Security course

/F® iMinds

A e

State-of-the-art Hands-on labs
technologies included

Why simply deploying HTTPS will not get you an A+ grade

How to avoid common pitfalls in authentication and authorization
Why modern security technologies will eradicate XSS

Four new browser communication mechanisms, and how they affect you

3rd edition starts on April 12th 2016

https://lwww.websec.be

The Web’s Security Model

Acknowledgements

Icons by Visual Pharm (https://icons8.com)

The Web’s Security Model
Philippe De Ryck

% philippe.deryck@cs.kuleuven.be

Y @PhilippeDeRyck

in lin/philippederyck

I https://www.websec.be

A Secure
- Application
@ Development

DistriNet

LAY T RSN o Leuven |

