
The Web’s Security Model

@PhilippeDeRyck https://www.websec.be

Philippe De Ryck

2

The Agenda for Today

3

§ The Same-Origin Policy
§ Setting a baseline with very relevant 20 year old technology

§ Third-Party Content Integration
§ Frame and script-based integration

§ Session Management
§ Cookies and the unavoidable CSRF attacks

§ Accessing Cross-Origin APIs
§ Extending the SOP with server-driven policies

§ Conclusion

About Me – Philippe De Ryck

4

§ Postdoctoral Researcher @ DistriNet (KU Leuven)
§ PhD on client-side Web security
§ Expert in the broad field of Web security
§ Main author of the Primer on Client-Side Web Security

§ Running the Web Security training program
§ Dissemination of knowledge and research results
§ Public training courses and targeted in-house training
§ Target audiences include industry and researchers

https://www.websec.be@PhilippeDeRyck

The Same-Origin Policy

5

Same-Origin Policy

6

§ Separation based on origin
§ Default security policy enforced by the browser
§ Restricts the interactions between contexts of different origins
§ Protects applications from unintended interactions
§ First appeared in browsers in 1995, and still going strong

SAME-ORIGIN POLICY
Content retrieved from one
origin can freely interact with
other content from that origin,
but interactions with content
from other origins are restricted

ORIGIN
The triple <scheme, host, port>
derived from the document’s URL.
For http://example.org/forum/, the
origin is <http, example.org, 80>

Examples of the Same-Origin Policy

7

SAME-ORIGIN POLICY
Content retrieved from one
origin can freely interact with
other content from that origin,
but interactions with content
from other origins are restricted

http://example.com

http://example.com

http://forum.example.com

http://private.example.com

Domains vs Subdomains

8

§ Subdomains
§ E.g. private.example.com vs forum.example.com
§ Considered different origin
§ Origin can be relaxed to example.com using document.domain
§ Possibility to use cookies on example.com

§ Completely separate domains
§ E.g. private.example.com vs exampleforum.com
§ Considered different origin, without possibility of relaxation
§ No possibility of shared cookies

Subdomains and Domain Relaxation

9

www.example.com

private.example.com

forum.example.com

account.example.com

Subdomains and Domain Relaxation

10

www.example.com

private.example.com

forum.example.com

account.example.com

document.domain = “example.com”;

DOMAIN RELAXATION

Subdomains and Domain Relaxation

11

www.example.com

private.example.com

forum.example.com

account.example.com

document.domain = “example.com”;

DOMAIN RELAXATION

But the SOP Is More than Context Isolation

12

SAME-ORIGIN POLICY
Content retrieved from one
origin can freely interact with
other content from that origin,
but interactions with content
from other origins are restricted

http://example.com

http://example.com
http://example.com

http://private.example.com

http://forum.example.com

http://private.example.com

Origin-Protected Resources

13

§ Modern browsers offer plenty of origin-protected resources
§ The DOM and all its contents
§ Client-side storage facilities

• Web storage, In-browser file systems, Indexed DB
§ Permissions to various ”invasive” features

• Geolocation, full-screen capabilities, media capture, …
§ WebRTC video and audio streams
§ Ability to load and inspect resources from same-origin servers
§ Ability to send XHR requests without restrictions

§ You want to be in control of what happens in your origin

Third-Party Content Integration

14

Third-Party Content Integration

15

Integration of Third-Party Code

16

§ Two mechanisms to integrate code
§ Embedding an iframe, which hosts a separate document
§ Directly including JavaScript code using the <script> tag

§ Iframes
§ Each iframe is a different context, with a separate origin
§ Preserves the security boundaries, but may hinder interaction

§ Scripts
§ Scripts are loaded and executed within the page’s context
§ Violates the security boundaries of a document

Iframe-based Content Integration

17

§ Iframes are controlled by the same-origin policy
§ Documents with different origins are isolated by the SOP
§ Well-suited to integrate separate components (e.g. advertisements)
§ Allows you to apply the principle of least privilege
§ More difficult to achieve dynamic interaction

§ HTML5 introduces the sandbox attribute
§ Supports disabling scripts, plugins, forms, etc.
§ Allows you to assign a unique origin to your content
§ Integrate untrusted content with a minimal set of capabilities

Interaction between Contexts

18

§ Related contexts
§ Documents can open popup windows, embed frames, etc.
§ Related cross-origin contexts are isolated by default
§ Limited interactions possible (navigation, messaging APIs, …)

§ Navigation
§ Navigate child frame to different resource
§ Navigate parent frame, reloading the entire document

§ Exposed APIs
§ Prime example: Web Messaging API, to support interaction

Web Messaging API

19

§ Messaging mechanism between contexts
§ Used for iframes, Web Workers, etc.
§ Event listener for receiving messages (opt-in mechanism)
§ API function for sending data (text, objects, etc.)

§ Security considerations
§ Specify origin of receiver to prevent leaking of content
§ Check origin of sender to prevent malicious use
§ Validate incoming content before using data to prevent injection

attacks

Web Messaging API

20

var handler = function(event) {
if(event.origin ==

'http://www.example.com') {
alert(event.data);

}
}
window.addEventListener('message', handler, false);

RECEIVING MESSAGES

myframe.postMessage(data,'http://test.example.com');

SENDING MESSAGES

Example: a Client-side Storage Facility

21

https://storage.example.com/

Client-side
Storage API

Accessing local storage through Web
Messaging allows enforcing access

control and content inspection

Script-based Content Integration

22

§ No security boundaries offered by browser
§ Scripts are executed in the context that loads them
§ No boundaries between remote and local scripts
§ Full access to the client-side context, including local resources

§ Potentially dangerous setup
§ No more control if you include scripts from all over the place
§ Which has unfortunately become common practice

Large-scale Study of Remote JS Inclusions

23

“88.45% of the Alexa top 10,000 web
sites included at least one remote

JavaScript library”

https://seclab.cs.ucsb.edu/media/uploads/papers/jsinclusions.pdf

Large-scale Study of Remote JS Inclusions

24
https://seclab.cs.ucsb.edu/media/uploads/papers/jsinclusions.pdf

Safely Including Third-Party Code

25

§ Leverage origin-based separation using iframes
§ Load the third-party script in a document with a different origin
§ SOP enforces isolation from the main origin and sensitive resources

§ Example case at Dropbox
§ They use a chat widget from a third-party provider
§ Inclusion in the main dropbox.com origin is an unacceptable risk
§ Widget loaded in an iframe with origin dbxsnapengage.com
§ Communication happens with Web Messaging

https://blogs.dropbox.com/tech/2015/09/csp-third-party-integrations-and-privilege-separation/

Reclaiming Control over Your Context

26

§ Say hello to Content Security Policy (CSP)
§ Main goal: prevent XSS attacks from causing harm
§ Allows you to specify where remote content can be loaded from
§ Allows you to specify where outgoing requests can go to

§ Policy specified by the server, enforced by the browser
§ Gives you control over your own code
§ Allows you to selectively load third-party code

• And constrain what that code can do

Alternative Approaches to Constrain Scripts

27

§ Hosting scripts in your own origin
§ Difficult to deal with a highly dynamic codebase

§ Safe JavaScript subsets
§ Requires compatibility with existing scripts

§ Server-side rewriting
§ Requires control over the scripts to do the rewriting

§ Browser-based sandboxing
§ Requires browser modifications, which is a deployment nightmare

§ JavaScript-based sandboxing
§ Active research topic, may become possible in the coming years

Session Management

28

The Basics of Cookies

29

§ An HTTP state management mechanism
§ Set by the server to the client through the Set-Cookie header
§ Offered by the client to the server through the Cookie header

§ Cookie properties
§ If no expiration date is set, it is removed when the browser closes
§ If no domain is set, it is only valid for the domain that issued it

• Otherwise, it is sent to the current domain and all subdomains

Set-Cookie: name=value; Expires=Wed, 09 Jun 2021 10:18:14 GMT;
Domain=example.com; Secure; HttpOnly

Cookie: name=value

Using Cookies to Manage Sessions

30

Some-shop.com

Show orders
List of orders

Go to some-shop.com
Hello stranger

Login as Philippe
Hello Philippe

Logged_in: true
User: Philippe
Admin: true

3a99a4d1e8f496

Logged_in: true
User: NotPhilippe
Admin: false

7ad3e9f78bc808Go to some-shop.com
Hello stranger

Login as NotPhilippe
Hello NotPhilippe

Logged_in: false

Logged_in: false

1

2

Properties of Cookie-Based Sessions

31

§ Session identifiers and objects are bearer tokens
§ The token represents ownership of the session

§ Cookies are managed by the browser
§ Stored automatically
§ Automatically attached to every request, if the domain matches

§ Common threats against cookie-based session management
§ Brute forcing a session identifier
§ Session hijacking and session fixation
§ Cross-Site Request Forgery

Cross-Site Request Forgery Illustrated

32

some-shop.com

hackedblog.com

Login as Philippe
Hello Philippe
Show orders
List of orders

Show latest blog post
Latest blog post

Change email address
Sure thing, Philippe

The Essence of CSRF

33

§ The server is confused about the intentions of the user
§ Malicious sites can trigger unintended requests from the browser
§ Consequence of the ambient authority carried by the cookie

§ Common vulnerability
§ Illustrated by cases at Google, Facebook, eBay, …
§ Ranked #8 on OWASP top 10 (2013)

§ Countermeasures require explicit action by the developer
§ Often only focus on POST / PUT / DELETE

CSRF Examples

34
http://news.softpedia.com/news/CSRF-Vulnerability-in-eBay-Allows-Hackers-to-Hijack-User-Accounts-Video-383316.shtml

CSRF Examples

35https://threatpost.com/pharming-attack-targets-home-router-dns-settings/111326
http://arstechnica.com/security/2014/03/hackers-hijack-300000-plus-wireless-routers-make-malicious-changes/

CSRF Defense 1: HTML tokens

36

§ Hide token within the page, and check upon form submission
§ Same-Origin Policy keeps this token out of reach for the attacker

some-shop.com

hackedblog.com

Account details page
Account details

Change email address
Sure thing, Philippe

Show latest blog post
Latest blog post

Change email address
CSRF token sadness L

t

t

CSRF Defense 1: HTML tokens

37

§ Hide token within the page, and check upon form submission
§ Same-Origin Policy keeps this token out of reach for the attacker

<form action=“submit.php”>
<input type=“hidden” name=“token”

value=“qasfj8j12adsjadu2223” />
…

</form>

TOKEN-BASED APPROACH

CSRF Defense 2: Origin Header

38

§ Check the origin header sent by the browser
§ Automatically added to state-changing requests (POST, PUT,

DELETE)

some-shop.com

hackedblog.com

Change email address
Origin: http://some-shop.com

Sure thing, Philippe

Show latest blog post
Latest blog post

Change email address
Origin: http://hackedblog.com

Stranger danger! L

CSRF Defense 3: Transparent Tokens

39

§ Transparent token stored in cookie, checked in header
§ Security depends on the ability to read the cookie from JavaScript

some-shop.com

First request

Set-Cookie: session=…
Set-Cookie: CSRF-Token=123

Cookie: session=…
Cookie: CSRF-Token=123

Only the JS code on the page can
copy cookie value into header

X-CSRF-Token: 123

Traditional Cookie-Based Session Management

40

§ Still very common in Web applications
§ Well-supported by browsers and frameworks
§ Often deployed in an insecure fashion
§ Keep best practices in mind when using this mechanism

§ Cookie-based session management best practices
§ Deploy your application over HTTPS
§ Set the HttpOnly and Secure flags
§ Host user-provided content on a different domain
§ Deploy CSRF defenses

Intermezzo: Cookie-based Tracking

41

§ Tracking by means of cookies uses the same mechanisms

some-shop.com

Some-other-shop.com

Visit page

Visit page

advertisements.com

Load advertisement
Advertisement
Set-Cookie: id=1

Load advertisement
Advertisement

Intermezzo: Cookie-based Tracking

42

§ Tracking by means of cookies uses the same mechanisms
§ Page context is stored alongside with your identifier
§ Information from multiple sites is linked together
§ Once you’re on an authenticated page, they have even more info

https://support.mozilla.org/en-US/questions/975325?page=2

Intermezzo: Cookie-based Tracking

43

§ Tracking by means of cookies uses the same mechanisms
§ Page context is stored alongside with your identifier
§ Information from multiple sites is linked together
§ Once you’re on an authenticated page, they have even more info

§ Many attempts to stop this behavior of cookies
§ With little to no success
§ Even the “Do-Not-Track” header is used to compile fingerprints

§ Do not worry, there are plenty of tracking mechanisms
§ Browser fingerprinting
§ HTML5 Battery API

Accessing Cross-Origin APIs

44

Web Applications Did not Rely on APIs

45

GET showItems.php

25/02/2015

Overview

30/03/2015
Cooking
B-day party

Parse request

Store data

Retrieve all data

Generate HTML

Send response

Deadline Task

Add New
<html>

…
</html>

GET contacts.php

Because Browsers Did not Allow It …

46

Cross-Origin Data Access

47

§ Data sharing across applications became a big thing
§ E.g. Google Services, Facebook’s Graph API, …
§ The Web was not built to support these scenarios

§ Many useful scenarios sparked creativity, and workarounds
§ Workarounds bypass the browser’s basic security model
§ Often with serious consequences for the security of the site
§ Two commonly used technologies:

• Server-side proxies
• JSONP

Server-Side Proxies

48

§ The browser considers this content to be from the same
origin
§ The included data or code runs with the same privileges
§ Script injection by design

Load page

www.websec.be

XHR: Load content
from websec.be Load page

www.example.com

JSON with Padding (JSONP)

49

§ The included data or code runs with the same privileges
§ Script injection by design

Load page

Load script
from websec.be

www.example.com

www.websec.be

<script src=“http://www.websec.be/data?callback=showUsers”>
</script>

showUsers([{"id": 1, "name": "Philippe"},
{"id": 2, "name": "NotPhilippe"}]);

These Workarounds Are Dangerous

50

§ The landscape started to evolve very quickly
§ More and more companies started offering APIs
§ More and more applications started integrating APIs
§ The hacks being used in practice suffer from severe security issues

§ Essentially, it was time to enable data sharing by design
§ Best approach is to allow XHR to fetch data from another origin
§ This is exactly what Cross-Origin Resource Sharing (CORS) does

• But it needs 22 pages of specification to do so

Simply Allowing XHR across Origins

51

Load page

XHR: load user’s
profile from websec.be

www.example.com

www.websec.be

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://www.websec.be/profile', false);
xhr.send();

// Access the profile data
alert(xhr.responseText);

Simply Allowing XHR across Origins

52

Load page

XHR: load user’s
profile from websec.be

www.example.com

www.websec.be

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://www.websec.be/profile', false);
xhr.send();

// Access the profile data
alert(xhr.responseText);

Cross-Origin XHR Is also Dangerous!

53

§ This would enable scenarios that were previously impossible
§ Not something you want on the Web

§ CORS addresses this problem

§ The browser enforces these checks on the XHR call
§ If everything is OK, access to the resource (response) is granted
§ Otherwise, access is denied

CORS allows the server to tell the browser whether a
resource can be accessed by a specific origin

Simple CORS Example

54

Load page

XHR: load user’s profile from websec.be

www.example.com

www.websec.be

Origin: http://www.example.com

Access-Control-Allow-Origin:
http://www.example.com

CORS Protects Legacy Servers by Design

55

Load page

XHR: load user’s profile from websec.be

www.example.com

www.websec.be

Origin: http://www.example.com

No CORS headers present

Violates Implicit Client-Side Security
Assumption

56
http://m-austin.com/blog/?p=19

Violates Implicit Client-Side Security
Assumption

57

Load template “profile.html”

Load template “http://www.websec.be/evil.html”

www.example.com

www.websec.be

Origin: http://www.example.com

XHR requests can only be sent to the application’s origin

function onNavigate(page) {
var xhr = new XMLHttpRequest();
xhr.open("GET", page, false);
xhr.send();
//inject response into the page

}

Access-Control-Allow-Origin:
http://www.example.com

Handling Credentials

58

§ Requests can be anonymous or authenticated
§ By default, credentials (i.e. cookies) are not sent
§ Can be enabled by setting the withCredentials flag

§ When credentials are used, the server must acknowledge
this
§ By sending the Access-Control-Allow-Credentials response header

§ Aim is to prevent illegitimate use of the user’s credentials
§ Not intended to protect the server from malicious requests

Simple CORS Example with Credentials

59

Load page

XHR: load user’s profile from websec.be

www.example.com

www.websec.be

Origin: http://www.example.com
Cookie: PHPSESSID=1a2b3c4d5e6f

Access-Control-Allow-Origin:
http://www.example.com

Access-Control-Allow-Credentials: true

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://www.websec.be/profile', false);
xhr.withCredentials = true;
xhr.send();

Simple CORS Example with Credentials

60

XHR: load user’s profile from websec.be

www.websec.be

Origin: http://www.example.com
Cookie: PHPSESSID=1a2b3c4d5e6f

Access-Control-Allow-Origin:
http://www.example.com

Access-Control-Allow-Credentials: true

XHR: load user’s profile from websec.be
Origin: http://www.example.com

Cookie: PHPSESSID=???

Access-Control-Allow-Origin:
http://www.example.com

Access-Control-Allow-Credentials: true

But There Is More …

61

Load page

XHR: delete user’s profile from websec.be

www.example.com

www.websec.be

Origin: http://www.example.com

Absence of header means that this is not allowed

var xhr = new XMLHttpRequest();
xhr.open(’DELETE', 'http://www.websec.be/profile/1', false);
xhr.send();

But There Is More …

62

§ Denying access to the response protects sensitive data
§ Prevents an attacker from reading the user’s data
§ Only possible because data retrieval is a stateless operation

§ Most APIs also offer operations that trigger state changes
§ Creating, updating and deleting resources
§ Denying access to the response does not really cut it here …

§ CORS requires explicit approval for these requests

Explicitly Approving Requests

63

§ CORS aims to prevent giving the attacker more capabilities
§ Makes a distinction between simple and non-simple requests

§ Simple requests were already possible before CORS
§ A GET or a simple POST across origins was always possible
§ E.g. fetching an image from another origin
§ E.g. submitting a form to another origin

§ Non-simple requests were not possible before CORS
§ E.g. a cross-origin DELETE or PUT request
§ E.g. attaching additional headers to a cross-origin POST request

Non-Simple Requests Require a Preflight

64

Load page

Check if delete is allowed

www.example.com

www.websec.be
OPTIONS /profile/1 HTTP/1.1

Origin: http://www.example.com
Access-Control-Request-Method: DELETE

Access-Control-Allow-Origin: http://www.example.com
Access-Control-Allow-Methods: GET, PUT, DELETE

Actual delete
DELETE /profile/1 HTTP/1.1

Origin: http://www.example.com

Access-Control-Allow-Origin: http://www.example.com

Preflight Configuration Options

65

§ The preflight request asks for permission
§ Based on the data that will be sent with the actual request
§ Is sent automatically by the browser for non-simple requests

§ CORS preflight request headers
§ Origin
§ Access-Control-Request-Method

• Specify the method that will be used for the non-simple request
§ Access-Control-Request-Headers

• Specify which custom headers will be added to the request

Preflight Configuration Options

66

§ CORS response headers on preflight requests
§ Access-Control-Allow-Origin
§ Access-Control-Allow-Methods

• Indicate which methods can be used for the actual request
§ Access-Control-Allow-Headers

• Indicate which request headers can be used for the actual request
§ Access-Control-Max-Age

• Indicate how long this response should be cached
§ Access-Control-Allow-Credentials

• Indicate if the actual request can include credentials

CORS Request and Response Headers

67

§ CORS request headers
§ Origin

§ CORS response headers on actual requests
§ Access-Control-Allow-Origin
§ Access-Control-Expose-Headers

• Indicate which response headers the browser can expose
§ Access-Control-Allow-Credentials

• Indicate if the response can be exposed if credentials are used

Preflight Requests in Practice

68

§ Server configuration
§ Developer needs to specify a policy
§ Plenty of frameworks/middleware offer automatic configuration

§ For efficiency reasons, preflights are cached by the browser
§ Eliminates an additional round trip for the lifetime of the entry

§ Mandatory if you use custom headers (e.g. JWT tokens)
§ CORS only allows cookies without preflight for simple requests

CORS Support in Browsers

69
http://caniuse.com/#search=cors

CORS in Practice

70

§ CORS is well supported
§ Virtually all modern browsers are CORS-enabled
§ Many server-side frameworks support CORS configuration
§ Many publicly available APIs already send CORS headers

§ CORS should be even more widely supported
§ Many new technologies depend on CORS under the hood
§ Mainly to prevent new capabilities from harming legacy servers
§ E.g. HTML5 canvas, Subresource Integrity, …

And many
more …

Guidelines for Building a CORS Policy

71

§ Private resources should not be accessible with CORS
§ Files that only your application should use, and nobody else
§ Sensitive resources and APIs

§ Public resources should be easily accessible with CORS
§ Files that anybody can use, without authorization
§ Published libraries, publicly available images, …
§ Especially non-sensitive, non-private JavaScript files (SRI)

Do not send any CORS headers in the response

Access-Control-Allow-Origin: *

Guidelines for Building a CORS Policy

72

§ Some sensitive, private resources need to be shared
§ E.g. a contact list to be used in a partner application
§ E.g. a button to integrate in other sites, that requires authentication

§ These steps should be followed by the server
§ Verify if the value of the Origin header matches an accepted origin

• If not, abort without sending any headers
§ Verify if the user is authorized to access the requested resource

• Take the method and custom headers into account
• If not, abort without sending any headers

§ Process the request, and send the appropriate headers
Access-Control-Allow-Origin: http://www.example.com
Access-Control-Allow-Credentials: true
Access-Control-Expose-Headers: X-API-VERSION

Exciting New Features of a Canvas

73

§ HTML5 Canvas offers JavaScript-powered graphics
§ Good candidate to replace Flash and similar plugins
§ Enables various impressive scenarios, including entire games

§ HTML5 Canvas supports rendering of existing graphics
§ E.g. play an HTML5 video on the surface of a canvas
§ E.g. render an existing image on a canvas and edit it

§ Extensive JavaScript API
§ Supports features to inspect images, manipulate images
§ Supports saving as a Data URI or a File blob

HTML5 Canvas Enables Image Manipulation

74

www.websec.beContext:
www.example.com

Get image

<canvas>
</canvas>

img.onload = function() {
canvas.width = img.width;
canvas.height = img.height;
ctx.drawImage(img, 0, 0);

}

Get image

HTML5 Canvas Enables Image Inspection

75

www.websec.beContext:
www.example.com

Get image

<canvas>
</canvas>

Get image

// Get the CanvasPixelArray from the given coordinates and dimensions.
var imgd = context.getImageData(x, y, width, height);
var pix = imgd.data;

// Extract as Data URI
canvas.toDataURL("image/png”);

Images Can Be Shared Across Origins

76

Context:
www.example.com

<canvas>
</canvas>

Get image

var img = new Image();
img.crossOrigin = "Anonymous"; //or "use-credentials”
img.src = "http://www.websec.be/topsecret.png";

Origin: http://www.example.com

Access-Control-Allow-Origin:
http://www.example.com

Canvas Support in Browsers

77
http://caniuse.com/#search=canvas

Conclusion

78

Embrace the Same-Origin Policy

79

§ The SOP may be old, but it’s still incredibly relevant
§ Context isolation protects your page’s contents
§ Prevents unauthorized access to your origin-based resources

§ Direct script inclusion bypasses any origin-based protection
§ Scripts are executed within the page’s context
§ Perfectly fine for your own JavaScript code
§ Very problematic with third-party code

§ Protect yourself by combining iframes with new technologies
§ Principle of least privilege with sandbox and CSP

Dealing with Remote Communication

80

§ The SOP only protects against direct context interaction
§ Prevents direct access to your session cookies
§ Indirect interactions can still cause unintended consequences

• Cookies are attached to outgoing requests, causing CSRF

§ Scripted remote communication is denied by the SOP
§ Used to be the case before CORS was introduced
§ With CORS, the server is in control over which requests are allowed
§ Complex policy, but very powerful, and already used a lot

Take Security Seriously

81

§ Isolating content may require a bit more effort
§ But you gain a lot of security guarantees by doing it

§ Take inspiration from your predecessors
§ There are plenty more examples besides Dropbox

§ Share your experiences
§ And be a leader for others to do the same

Progressive Web Security course

1. Why simply deploying HTTPS will not get you an A+ grade

2. How to avoid common pitfalls in authentication and authorization

3. Why modern security technologies will eradicate XSS

4. Four new browser communication mechanisms, and how they affect you

State-of-the-art
technologies

Hands-on labs
included

3rd edition starts on April 12th 2016
https://www.websec.be

The Web’s Security Model
Acknowledgements

Icons by Visual Pharm (https://icons8.com)

The Web’s Security Model

philippe.deryck@cs.kuleuven.be

/in/philippederyck

https://www.websec.be

@PhilippeDeRyck

Philippe De Ryck

